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Abstract--On the basis of the theory of internal heat-mass transfer and deforming for ablating materials 
developed before the present paper, a theory of heat-mass transfer processes and stress state in thin-walled 
shell structures made of ablating composite materials is suggested. This theory is based on the system of 
special hypotheses with respect to distributions of main process characteristics vs the shell thickness. 
Accurate analytical solution is obtained for cylindrical ablating shells. Comparison of the ablating shells' 
theory suggested with results of computations shows a high accuracy of the theory up to 15%, that is a 
fine result for a shell theory. A theory of delaminations' appearance in ablating shells and their stability 
loss under the action of internal pore gas pressure is developed. Calculations of stability estimation for 
tank-containers made of ablating glass-plastics for the carriage of harsh media in fire. Copyright © 1996 

Elsevier Science Ltd. 

1. INTRODUCTION 

At present thin-walled shell structures made of com- 
posite materials have a wide application in different 
fields of technique : from aerospace structures to tank- 
containers for the carriage of harsh media. Up to now, 
design of such hardware has been based in the main 
on strength calculations [1]. However, nowadays 
investigation problems on behaviour of thin-walled 
structures made of polymer composite materials under 
conditions of high temperatures' action become more 
and more realistic, for example, this problem appears 
in the investigation of the resistance of hardware of 
the tank-container type in fire or in calculation of 
aerospace structures' work-capacity in aerodynamic 
heating. 

Up to now, the behaviour of thin-walled structures 
made of polymer composites under conditions of high 
temperatures has not been investigated. It is evident 
that their behaviour essentially differs from the one of 
metallic thin-walled structures. Due to substantially 
lower heat-conductivity, polymer composite materials 
have a longer resource for location in a high tem- 
perature zone. However, there is an internal ablation 
(pyrolise) in composites at high temperatures that is 
accompanied by intensive gas generation. Gases in 
pores have no time to be filtrated to the external sur- 
face and create excess pore pressure that can lead to 
delamination of the glass-plastic shell structure. After 
appearance of the delamination, a closed shell struc- 
ture of the cylindrical type is still capable to keep 
stability to the act!Lon of high temperatures for certain 
times and only when internal gas pressure in a cavity 
formed by delamination reaches its critical value, then 
thermomechanical destruction of the whole structure 

occurs due to a loss of stability of its internal layers. 
Possibility of quantitative description of these 
phenomena is extremely important for estimation of 
a stability resource of thin-walled structures under 
conditions of the high temperatures' action, Develop- 
ment of such methods of calculation is the objective 
of this paper. 

The ablating composite material model describing 
coupled processes of internal heat-mass transfer and 
deforming was developed in refs. [2-5]. In the present 
paper a theory of heat-mass transfer and stress state 
is developed on the basis of this model for thin-walled 
shell structures of ablating glass-plastics taking 
account of their delamination at the action of high 
temperatures. 

2. GENERAL EQUATIONS 

In accordance with ref. [2], a composite material at 
high temperatures is considered to be a four-phase 
medium : the first phase is a thermostable reinforcing 
filler in the form of glass or other fibres ; the second 
phase is a polymer matrix; the third phase is a solid 
residue of high-temperature pyrolise of polymer; the 
fourth phase is gaseous products ofpyrolise in pores of 
the material. The first three phases form a monolithic 
framework of material. Consider the case when a re- 
inforcing filler is oriented in such manner that the 
composite as a whole can be considered as an ortho- 
tropic laminated material with orthotropy axes being 
coincident with the axes of the chosen curvilinear 
orthogonal coordinate system Oq,, ~ = i, 2, 3 and 
the Oq3 axis is orthogonal to the plane of the compo- 
site layers and to the shell surface. 

Write a general system of equations for a composite 
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NOMENCLATURE 

A~ coefficients of  the first squared form of R~ 
a middle surface of a shell t 

b~ material constants describing a change t ,  
of strength and elastic features of 
composites with temperature t** 

Cg, c~ specific heat-capacities of phases T,a 
[m2(s 2 K) - ' ]  U~ 

e~ strains of a shell 
E~ elasticity modules of phases W 

[kg m-' s -2] z, 
0 Aeg,Aeg heat of volumetric and surface 

ablation [m E S-1] 
fiX, t) shape of phase separation surface 
h shell thickness [m] 
hd thickness of a nondelaminated part of 

a shell 
H, ~ = l, 2, 3 ; Lamet's parameters of 

curvilinear coordinate system q~ 
J intensity of mass transfer from 

polymer phase to gas [kg(m 3 s) -J] 
M,p moments in a shell [kg m s -~-] 
p~ gas pressure on an external composite v~j 

surface [kg(m s 2)-~] Pg, Pi 

p pore gas pressure [kg(m S 2)- l] ai j 
Pa gas pressure in a delamination cavity 

of a shell ~c~ 
Q~ crossing forces [kg s -2] 
q, curvilinear orthogonal coordinates 
R radius of a middle surface of a 

cylindrical shell [m] 

universal gas constant [mZ(s 2 K) 1] 
time [s] 
the time of appearance of the first shell 
delamination 
the time of stability loss of a shell 
forces in a shell 
displacement of a middle surface of a 
shell [m] 
deflection of a shell [m] 
damage parameter of a shell. 

Greek symbols 
ai, a~i coefficients of heat phase expansion 

[K-II  
a m coefficient of heat transfer [kg(s 3 K)-1] 
fl,h shrinkage coefficient 
F gasification coefficient 
8, e~j strain tensor and its components 
0 temperature [K] 
2,j components of a heat-conduction 

tensor [kg m(s 3 K ) - q  
Poisson coefficients 
phase density [kg m -3] 
stress tensor's components 
[kg(m s 2) - ' ]  
curvatures of a shell. 

Subscripts 
e (external) parameters of the surroundings 
g (gas) parameters of a gas phase. 

with internal ablation in this coordinate system. Then 
equilibrium equations have the following form : 

8 8 

+ bTq~ (H.n~, , .+,)-  +,~#-/, 

9Hv 9H, 

9H, 
- H p H , ~ q ~  = O; 

a, fl, 7 = l , 2 , 3 ;  ~ ¢ f l ¢ 7 ;  (1) 

equations of changing mass of the second and third 
phases are 

o 0~3 
P3 ~ -  = (l - F ) J ;  (2) 

o 9q~2 
P2 ~ = - J ;  (3) 

equation of filteration of pyrolise gaseous products in 
pores is 

9~tg - 1 / 9 [ H z H 3 

9 /HI H3 9pgO\ 

9 [ . , . 2  9.,03) 
+ ~q3 ~H~-s " K33R" 9q3 ] ] + V J  

and equation of  heat transfer is 

00 1 / 9 /H2H3 90 \ 
pc 9 t -- H, i~I2 Hs ~ ~---ql ~--~iT--12 , , ~ql ) 

9 [HiHs c~O\ 

9 [ n l n  2 00~..1_ c4gllROpgO •0 
"k- ~ ~ 2 3 S  Oq3] ] 92 9ql 9ql 

(4) 
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c4K22R OpgO 630 c4K,,R 6qpgO O0 
+ - -  _ _  + - -  _Ae0j ,  

H 2 Oq2 Oqz HE c3q3 63q3 

(5) 
here Hi, //2 and Ha are Lamet 's  parameters [6]. The 
Cauchy's relations connected composite strains e, e 
with displacements u~ in the curvilinear coordinate 
system have the form : 

1 63u= 1 c~H~ 1 63H= 
~== H: aq= + HfH# ~q# u# + H~H~ aq~ u~; (6) 

e, fl, y := 1,2,3;  a ¢ f l C y .  (7) 

Constitutive relations for an orthotropic laminated 
ablating material have the form : 

3 
a =  = - p + a  ° Y . c . ~ ( e ~ - ~ e ~ ) ;  ~ = 1 , 2 ;  (8) 

B=l 

3 

a3x = - p + a  ° ~ C3fl(gflfl--~flfl)-} - aO  C33(g33--~33) ; 
f l=l  

(9) 

grl2 = (~1°C66e12 ; (10) 

(r23 = a ° C 5 5 8 2 3  ; (11) 

713 = 1~2°C44~1, (12) 

where p is pore pressure of gas : 

p = paR.O, (13) 

and C~a are elasticity modules of orthotropic material. 
at ° and a0 are functions describing a change of elastic 
features of the composite at raised temperatures up to 
pyrolise temperatures : 

~ + ~ ,  ~-1 
~o= 1 . _ ~ +  bz(Tz+b____ 3,] , (14) 

(1 _~0): 
~0 = l +a2(ck2_q)O)+a2ck3, b2 = ~0 + . 

I/a2 --dp ° ' 

b3 = bza3/a2, (15) 

where a2 and a3 are the model constants determined 
in experiments [3] ; ~b ° is the initial concentration of a 
binder in the composite. 

Heat deformations ~p of an ablating composite 
consist of  three temas : heat expansion of the material, 
deformation of phase transformation (pyrolise) 
shrinkage in pyrolise [2]. 

~ = a~((~,  (1 -a:~q~°) 

+~24~zaz)(O-Oo)+=3a, fl 0~, d't'-- flsha, ~b,) ; 

fl = 1,2; (16) 

here ~ are coefficients of heat expansion of the ith 
phase, fl~h is the shrinkage of the binder in pyrolise. 

3. EQUATIONS OF THIN-WALLED ABLATING 
SHELLS 

Let us consider a thin-walled shell of  ablating 
material with the thickness h, where the line q3 
coincides with the normal  to the surface, 
- (h /2 )  ~< q3 ~< (h/2) and q~ and qz coincide with the 
lines of main curvatures of the shell surface. There are 
H 3 = 1, H, = A~(1 + kaq3) [6] for this case, where A=(q) 
are coefficients of the first square form of the surface 
reduced (q3 = 0), k~ are its main curvatures. 

Boundary conditions for the equation system (1)- 
(7) at surfaces q3 = --- h/2 have the form : 

(~sO '33- - (~gp  = --p+, 0"~3 = 0 ;  

63p~0 , 
-v- ,h3 63°63q, = q+_ - (o -o+_)R .ed , : .  TqTq, " 

= 1,2; p=p_+ ,  (17) 

where p+ is the external pressure on the shell ; q+ is 
the heat flux to the external surfaces. 

Let us consider very thin shells for which there 
is k~,q3 << 1 then the terms k~,q, can be neglected in 
comparison with 1 for ~ = 1, 2 ; in particular H,  ~ A, 
f o r ~ =  1,2. 

Forces Tn, Tl2, T=, moments MI, Mz and Mi2, 
crossing forces QI, Q> averaged pressure Pg are intro- 
duced as follows : 

1 ,f,_,2 l f h~2 - -  - -  ~sO'~3H2 dq, ; T~ = ~ :,/2 q~.o'=a dq, ; Q~ - q~ :-h/z 

1 ~/2 1 h/2 
M~lJ=~f_h/2dAa~q 'dq3; Mg=~f_h/Ed&Pgq3 dq3; 

1 ~h/2 
Pg = -~7~ ~h/2 ckgp, dq3 ; 

cbg = 1 - 4 , .  

lhf_ 2 
~bs dq3 ; qh-~  h~2 

:~,fl = 1,2. (18)  

Averaging the equilibrium equation (1) over the thick- 
ness, we obtain : 

63@sm2Tl 1 63q~sm| T21 63A 2 T 2 2 ~  s 

6 3 q ~  + a q ~  ~q, 

63A1 - 
+ ~q24asT,2 + ~sAiA2k, Q, 

- A 2  63~gP* = 0 ; 
63ql 
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0q~A 1 T22 O~b~A2TI2 
0q2 0q~ 

OA| T ~ 0A2 - 
Oq2 ~'q~+ ~q l  ~b' T2~ 

-~- ~)S A 1 A 2 k 2  Q2 - A 1 dt;~gPg _ 0 ; 
0q2 

- A, A~$~(k, T,1 + k: T=) 
8A2Q|49~ OA1Q2(o~ 

-t - -  + - -  Oql ~?q: 
-1,~A~ & - (~ ,  + k:)& A~ $~e~ = O. 

(19) 
Multiplying the equation (1) for ~ = 1, 2 by q3 and 
integrating over the thickness, we find two equations 
for the moments : 

q~sA2Mll or_ dq~sA1M21 
0ql 0q2 

0 A  1 - 0 A  2 - 
+ ~q2 M~=q~- ~-ql q~sM22 -A,A2~�sQ1 

- &  05~M~ _ 0; (20) 
0qj 

0q~sA 1M22 O ~ o s A 2 M I 2  OA: 
O q ~  + 0q2 + ~-ql M2'$~ 

dAIoq2 ~O~MII _AIAjP~Q2_A1 Oq2 - 0 .  

where U,, ),,, Wandf~,f3 are functions of coordinates 
q , sandt ,~ , f l=  1,2; 

(c) the following integral relations are considered 
instead of state equations (9), (11), (12) 

f 
h/2 ; 2  

~s0"33 dq3 = -- qbaodq3 
,J --h/2 hi2 

+ C3,8 [ ¢~6°(e,8~-g,8,8) dq3 
,8= 1 ,,I --h/2 

t 
h/2 

+C33 ~bs6°(033 -g33) dq3, (24) 
d --h/2 

~b~à 3̀ dq3 = C:e+3,``+3 q~sl~0~¢*3 dq3, 
d --h/2 d -hi2 

= 1, 2 ; (25) 

(d) external heating of the shell by heat fluxes q_+ is 
considered to be low-changing along the shell surface 
and thus temperature 0, pore pressure p, gas density 
pg and concentrations ~bg, ~02, ~03 distributions can be 
assumed to be functions only of coordinate q3 and 
time t. 

Distributions (21) and (22) satisfy boundary con- 
ditions (19) at the shell surfaces q3 = +_h/2 auto- 
matically. 

Substituting expressions (20) into the kinematic 
relations (6) and (7), we obtain the expressions for 
strains : 

At present there exists a great number of theories 
for calculation of a stress-strain state of thin-walled 
shells [6-9]. For laminated composite materials the 
Timoshenko's shell theory is the simplest and 
sufficiently acceptable. However, this theory and also 
its analogs cannot be applied to ablating shells as 
they do not consider the most dangerous delaminating 
stresses 0"33 arising due to internal gas generation of 
an ablating laminate. In order to take account of this 
effect it is necessary to formulate a new system of 
hypotheses for a shell theory : 

(a) distribution of displacements u~,, u3 through the 
shell thickness is chosen in the form 

Uo: W q3 y~ 
u s = - - ;  u3 = W; (21) 

(b) distributions of shear 0"̀  ̀3 and normal 0-33 stresses 
are chosen in the form 

C``+3``+3 - q ]  + h2 0so,  ( +, (22) 

¢~a3~ = d&p--p_ + (p_p+) + 

= 1, 2, (23) 

e..,,8 + q3 K~,'8 
~,8 - 60~b~ , 033 = 0; (26) 

1 8W Z~,y~,-k~,U~, 
20~3 - A~ 0q, + a°~b, , ct = 1, 2, 

where the following designations are introduced 

l OU~ 1 
e~'~'-A,, Oq~, +A~A~ U,8+k~,W, ~ =  1,2, 

1 (o<'1+±? % 
e,2 = ~ \-~q2,] 2A, \ Sq, / 

1 97,, 
x= = A~ 0q'--7~, + - -  

1 ( 0 A 1  9.42 
--2A,Az\Oq2 U' + ~ql U2); 

1 OA~, 
A,A2 ~qTfl; 

1 0 o 
Z~, = 1 -q3k.  ao c~s O-~3(a, 4)s), (27) 

being kinematic relations for thin-walled shells. 
Substituting distributions (22) and (23) for stresses 

and (26) for strains into relations (24) and (25) we 
derive equations allowing us to express functionsf~,f3 
in terms ofT~, U~ and W: 

( 0W 
tt'6 A~h ~ q  --~0k~U~); L = -:v@7,  + 
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) - C3#e~+h ~ C3#e#a , 

where the following designations are introduced 

j ~h/2 ao 
"*/2 a°z~dq3;  7.,o = _~-ffo aq3; 

~ot ~ --hi2 0 --hi2 a 1 

~#a a ° ~bsd~#q~ dq3 ; P~ = q~-~ J-,~/2 q~p dq3 ; 

1 f ~/z 1 f h/2 

If functions 7~, U~ and W are known, then stresses 
G3 in a shell can be determined by formulae (22) and 
(23) and a~# by formulae : 

1 3 

G~ = - P  + ~)~-U #=Et C,,# (ep# + q3 x## -- ga# ) ; 

a12 ==~s6(e12+q3x12). 

oo 1L(A,A   O0 
pc Ot A1A2 0q3\ 0q3] 

OpgO 00 
+c~R~K33 Oq--~ 0q--~3 -Ae°J" (32) 

(28) 

Thus, equilibrium equations (19) and (20) are the 
ones into which constitutive relations (31) and kine- 
matic relations (27) should be substituted. Also equa- 
tions of heat and mass transfer (32) are the closed 
system of eight equations used to determine five func- 
tions U~, 7~, W depending on q~, t, ct = l,  2 and three 
functions pg, q~2, 0 depending on q,, q3, t. It should 
be noted that due to assuming the hypothesis (d), 
functions pg, ~2 and 0 depend on q~ only para- 
metrically: i.e. by the dependence of external heat 
flux q± and pressure p± at the shell surface upon 
coordinates q~ in boundary conditions (23). 

Contour L bounding the shell according to the 
(29) assumption (d) should be hermetic and heat-insulated, 

i.e. at this contour all derivatives should be equal to 
zero: 00/0q~ = O, OpgO/Oq~ = 0. Therefore there are 
only 'mechanical' boundary conditions at the contour 
L for system (19) and (20). For example, at contour 
q~ = const they are given by five values, i.e. by one 
value from each pair : 

(4~T,l--4sPg, u~,), (T,2, u#), 

(Q,,,W), (~,M,,-q~sMg,7~,), (M,2,Zo). 

(30) (33) 

On substituting expressions (21) and (30) into (18), 
the constitutive relations for a shell can be derived : 

2 
4 , r ~  = 4,e ,  ÷ E o_(o) o_(o). C~#(he#p - ~## ) - C~3e 33, 

~Ti2  = C66hel2 ; 

4sg~o = - 4 , M  + E 3 ' p_ , '~# \12 '~#  ~##,] '-'~3~33, 

h 3 

~d~ll2 = ~ C66x12 ; 

h 3 h c~ 
Q~ = --f C~+ 3,~+ 3(Z~y~-Zok~U~ + - ~ - - ~  ; 

ct = 1,2. (31) 

Taking account of the assumption (d), equations of 
internal heat and mass transfer (2)-(5) for a shell are 
rewritten in the form : 

dpg 

o 04,2 
P~ - ~ - 7  = - J ; 

, o(  
A1A2 0q3 AIA2K33R~ + F J ;  0t 

Initial conditions for system (32) are : 

Po ; 0 = 0 0 ,  (34) t=0: ~2=C, Pg=RaG 

where ~0,p0, z0 are the initial concentration of a binder 
in the composite, initial gas pressure in pores and 
initial temperature. Function th3 can be determined in 
terms of ~2 analytically : 

q~3 = (q~o _ dp2)p2/p3 (1 - F). (35) 

4. CYLINDRICAL ABLATING SHELL 

Now consider a special case of an ablating shell that 
can be used for a wide scope of applied problems. Let 
us consider an ablating shell being a rotation body 
(Fig. 1) with the symmetry axis z. The coordinate 
surface q3 = 0 is assumed to be coincident with the 
middle surface of the shell ; the meridional arc s and 
the azimuth angle tk counted off from the certain point 
Mo are chosen as coordinates ql, q2 and q3 = R - r ,  
where r is the radius. 

For the case of cylindrical shells the principal cur- 
vatures kl and k2 are the constants : 

1 
k l = 0 ;  k 2 = ~ ;  A ~ = I ;  A 2 = R .  (36) 

Then equilibrium equations (19) and (20) can be 
simplified : 
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filler ~ polymer solid phase 
matrix I l l  residue • pore gas e 

Fig. 1. Scheme of a thin-walled shell made of ablating 
material. 

8 
OSS ( ~ s r T l '  - -  ¢~gPg) = 0 ; 

a q3sT=- q3d'g +(p+ - p _ )  = o. 
as (q3,Q,) R 

0 
aS  ( ~ s m l  I - -  q~gmg) - q~sQl = 0. (37) 

Kinematic relations (17) take the form: 

8U~ W ; - ; ell = Os e22 R (38) 

871 
x l l = & - s ;  x 2 2 = 0 .  

Constitutive relations (31) for a cylindrical shell 
have the form : 

2 

,8=1 

h 3 3 o 
,ff__~ t ~ v(1) .  ~Ml,  --q3~M~+C,~l~i~ =l = - -  " , ~ l . 8 ~ f l f l  , 

h~ ( haW) 
(39) 

Heat and mass transfer equations (32) for a cyl- 
indrical shell are written in the form : 

a¢ 
p°-b7 = - j ;  

1 O { OpgO"~ 
OPgOt=7~r~K33R, r~-r )+FJ;  

80 1 O [ 80N @gO 80 
PeOT=r~r~233roT)+cgR'K33 Or Or J ~ e  0 . 

(40) 

Consider the system (36) and (39) with boundary  
conditions of the following form : 

s = s + :  (bsT~j-(ggeg=To; Q l = 0 ;  7 ~ = 0 ;  

s = s  : U I = 0 ;  Q l = 0 ;  ? l = 0 .  (41) 

Under  these conditions the system (36)-(39) has the 
solution : 

T , ,=  g; Tzz=~7((p+--p_)R+ZpgPg); 

Q, = 0 '  MII = -~bsM~-- f '  ~'(l)x~" ' 1 ~l#°f l#  ] ' 

el = 0. (42) 

Substituting formulae (42) into (39) we can find 
strains eaa, eu = 0. Stresses in the cylindrical shell can 
be determined by formulae (22), (23) and (30) : 

try3 = 0 ;  c~ = 1,2; o12 = 0 ;  

6 - p  o 
f3  = ~ ( - -  (q~s s + ~ g P g ) ~ ,  + (P+ - P - ) ~ 2  - C33g~°~) ; 

1 

1 2 / 1  o o) o k + +(P+--P-) ~_~1), 

ct = 1,2 ; (43) 

where 

1 
~, = 1 - x(C3,  (C22 -C,2)+C32(C,, -C~z) )  ; 

h R 
~ = ~ + S(-G,  c,~ + c . c , , )  ; 

A C1 2 = IC22 - - C 1 2  • 

Heat and mass transfer equations (40) are solved 
numerically. 

5. ABLATING SHELLS AFTER APPEARANCE OF 
DELAMINATIONS 

Up till now structures with ablating composites 
have been examined only for the time interval 0 ~< t ~< 
t . ,  till time t .  of  destruction by the thermomechanical 
type, for example, until  the composite delamination 
appears due to accumulating intrapore pressure of 
gaseous thermodestruction products. This restriction 
is justified for many structures, as after arising the 
delamination, a hardware having for example, a plane 
shape (plates, unclosed shells, panels), fails and loses 
completely its exploitational properties. However, for 
some types of structures there exist exploitational con- 
ditions when the hardware still performs its functional 
purpose for some time interval t .  ~< t ~< t** after 
delamination appearance. 
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This situation tak,~s place in external heating a shell 
with a closed contour made of thermodestructing 
composite material (Fig. 2), for example under the 
action of flame onto a cylindrical tank-container of 
glass-plastic. The action of a temperature field uni- 
formly distributed ever the surface on the cylindrical 
shell of the tank-container leads to forming ring 
delaminations having a closed contour. 

Because the shell of the tank-container has a closed 
contour,  it does not fail after arising the first delami- 
nat ion and continues to perform its functional 
purposes. In further heating, new ring delaminations 
appear, the format:ion process of which is directed 
from the outer surface of the shell to the inner one. 
Pore pressure is accumulated in each ring crack so 
that the pressure difference pd(ri, t) --pd(ri_ 1, t) (where 
i = 1 . . . . .  N, r~ is the radius of ith delamination) uni- 
formly distributed acts upon each of the cylindrical 
layers stripped off. The nondelaminated part of  the 
cylindrical shell of  the tank-container, with the thick- 
ness hal(t) (Fig. 2B), proves to be the most loaded, as 
that undergoes the action of the maximal pressure 
difference pd(rN, t)-- p_, hd= rN-- Rl. 

The process of delamination formation continues 
till time t** when at the certain critical thickness 

0+ + heat influence of fire 
(a) ~ ~l ~1 ~1 ~ ~ ~ ~ ~ jii 0 < t < t ,  

• ~ 7 - ~  ~ A b l a t i n g  glass- 

J ¢ ~ . ] l ~ .  ~ ~.N ~ Heat-insulating 

.¢" N ~. " ~ i / , ,  "~-....,,~ / ~  hermetizing 

(b) 0 ~I ~ ~1 ~ ~ ~ ~ ~ t , < t < t , ,  

~ ' ~ J  - : ~  D el a rnin a tion s 

"r.- Ul ~ ~ xi Ill ~ Direction of 

(C) t = t** 

J 
)elaminationa 

" ~ ~ L o s s  of 
• ~ internal layer 

~ stability 
hd(t** 

Fig. 2. Scheme of fire action onto a cylindrical glass-plastic 
shell, appearance and development of delaminations in the 
shell and a loss of shell stability under the action of pore 

pressure of ablation gas. 

hd(t**) the inner part of  the shell loses a stability 
under the action of the external pressure difference 
pd(rN, t**) --p~_ > 0 (Fig. 2C). After that the structure 
stops to perform its functional purpose and the tank- 
container fails completely. However, the time interval 
t * * -  t ,  since the first delamination appearance till a 
loss of stability of the tank-container shell is 
sufficiently long: t * * -  t ,  >> t , ,  therefore the method 
of stresses and heat-mass transfer calculations 
developed in Sections 2-4 for t < t ,  should be con- 
tinued for the time interval t ,  < t < t**. 

A condition of the delamination appearing in abla- 
ting composite has the form : 

Zl (t,(r), r) = 1, (44) 

where the damage functional z~ can be represented by 
the formula 

10.33(t,r) l +0.a3(t,r) 
Zl (t, r) - , (45) 

2a ° (t, r)a~- 

where 0.J- is the strength of laminated composite in 
tension along the Ox3 direction. 

For  a cylindrical shell the stress 0"33 can be deter- 
mined by formula (23). Substituting the expression 
for 0"33 into (44) we obtain : 

~g(r, t,)p(r, t,) --p_ + (p_ --p+) 

( ~ h R  + l ) + f 3 ( r , t , ) ( ~  - ( r - R )  2) 

ZI ~ = 1 .  
~b~(r, t,)a°(t,)0" + 

(46) 

From this equation the function t = t,(r) describing 
the advance of the delamination front in the shell can 
be determined. We will assume that the appearance of 
delamination does not  change a picture of heat-mass 
transfer in the shell. 

The critical external pressure p', for which the loss 
of stability of the nondelaminated shell section occurs, 
is written as follows : 

p*(t) = 0.92E26°(t) × ~- ,  (47) 

where L is the shell length and the stability condit ion 
has the form 

pd(rN, t)<~p*(t)--p , t, <~t<~t,,. (48) 

Now, derive the expression for the pressure Pd of 
gaseous pyrolise products accumulated in a ring crack. 
Use the equation of gas mass conservation : 

PgaVd = pg(V~+ - Vg_), (49) 

where Vg is the gas volume in pores entering the crack 
for time ( t -  t ,) ,  Pga is the gas density in the ring crack 

P~" (50) 
P~d = Ra 0 , 



1708 YU. I. DIMITRIENKO 

Vd is the crack volume opened by the pressure Pd 
action 

pd r3 
V d = xL(r2--rNe,~f) = 2~L ~0 ; (51) 

hdEza i 

where r N and rmef are the radii of the surface of the 
Nth delamination in the non-opened and opened by 
deforming states, respectively, 

+ pdru ~. 
rNdef = rN(1 +e0) = rN 1 hdE2~O], 

pg is the gas density in pores, Vg+ is the gas volume in 
pores entering the crack for time ( t - t , )  and Vg_ is 
the gas volume outflowing from the crack for time 
( t - - t , )  

f, Og(Vg+-- Vg_) = 2zcRL pg(Vg+-v~_)dz. 
dr. 

(52) 

On substituting formulae (50)-(52) into (49) and writ- 
ing the Darcy's relation for the crack borders : 

the expression for the pressure Pd is derived 

Pd(ru, t)=(g33RaE2a°'~NIt.((~r)_ 

/~p \  \ ,~1/2 
- -  ~ r ) + ) d z )  . (54) 

Using expressions (47), (48), (54), the condit ion for a 
loss of delamination stability at time t** can be 
derived as follows : 

(K33RaEEao. h____ I'"((SP'~ 

= 0.92E2g , 

where the time t ,  is evaluated from (46). 

form of a three-layered shell : the external layer was an 
ablating glass-plastic investigated, the middle layer - -  
heat-insulator, the internal layer- -a  thin hermetic 
metallic shell. 

All computations were conducted for a glass-plastic 
shell with the following geometric parameters : R = 2 
m, h = 2 × 10 -3 m, L = 3 m and with the following 
physical characteristics corresponding to the glass- 
plastic on the base of epoxy-phenol resin and glass 
fabric : 

2~ = L( ,qh  + L(2)4~2 + L(3)4~3 ; 

p = pl~bl +pz~b2+p3q~3 ; K,, = K° exp(-s~bg), 

~l = 2 × 1 0 - 6 K - 1 ,  f ish=5,  ~2 = 2 0 X I 0 - 6 K - 1 ,  

~3 = 2 x l 0 - 6 K - l ,  a z = a 3  = 0 , 1 ;  

pC = pICIt~l  -]-P2C2t~Z"]-p3C3t~3 ; 

Pl = 2.5 x 103 kg m-a ,  P2 = 1.2 × 103 kg m - 3 '  

P3 = 2.2 × lO 3 kgm  -3, 

cl = 0 . 8 9 k J k g  i K - 1 ,  

c3 = 1.5kJkg - l  K - l ,  

2l(3) = 0 . 51Wtm  - 1 K  - l ,  

23(3) = 0 . 5 W t m  -1 K -1, 

c2 = 0 .6kJkg - l  K - l ,  

cg = 3.1 kJkg  - l  K -1 ; 

22(3) = 0 . 27Wtm  -1 K - l ,  

2g(3 ) = 0,1 Wt  m -  1 K -  1 ; 

J0 = 3 .2×106kg m - 3 K - l ,  Ea/R a = 5.5× 103K, 

F = 0 . 7 8 ,  K ° = 1 . 8 x l 0 - 1 9 s ,  S =  100; 

a~ = 2 0 M P a ,  n = 5 ,  El = 2 0 G P a ,  

E2 = 20GPa,  E3 = 2 G P a ;  vl2 = 0.27, 

v23 = 0.021, Vl3 = 0.021, Gl2 = 8GPa,  

G23 = 0.72GPa,  Gl3 = 0.72GPa. 

External and internal pressures are considered to 
be atmospheric : p_ = p+ = 0.1 MPa, the internal sur- 
face of the glass-plastic shell is assumed to be heat- 
insulated. The action of a fire flame onto the external 
surface of the shell is modelled by giving the tem- 
perature 0+ in the form of the known function of 
time : 

6. COMPUTED RESULTS 

To estimate the accuracy of the thin-walled ablating 
shells' theory developed above, computations were 
performed for stresses and parameters of internal 
heat-mass transfer of a cylindrical shell modelling a 
glass-plastic tank-container,  the whole surface of 
which undergoes the action of fire. Computat ion was 
conducted in two ways : according to the faithful the- 
ory presented in Section 2 by the numerical difference 
scheme (this theory for cylindrical shells is described 
in detail in [2]) and according to the shell theory, i.e. 
by formulae (43) and (32). 

The tank-container structure was considered in the 

0 = 0+ (t). 

Figure 8 shows the shape of this function. 
The action of high temperature (max 0+ = 880°C) 

leads to heat propagation into the glass-plastic shell. 
Figure 3 shows the temperature O(r, t) distribution 
along the shell thickness for different times. Figure 5 
shows the corresponding distributions of coke content  
~b3(r, t) in the ablating material through the shell thick- 
ness and distributions of polymer phase ~b2(r, t) for 
different times t = 10, 100, 200, 300, 400, 500 and 600 s. 
Figure 4 shows distribution of pore gas pressure p(r, t) 
through the shell thickness for the same times. 

The temperature O(r, t) profile at each time moment  
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Fig. 3. Temperature 0 distribution vs a thickness of a cyl- 
indrical shell made of e~blating material for different times t, 
symbols near the curves are times t (s). Arrows show the 

direction of heating front propagation. 
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Fig. 4. Internal pore gas pressure p distribution in a cyl- 
indrical shell made of ablating glass-plastic for different 

times t of fire action. 

has three parts, where 0 ~< 150°C, 150°C ~< 0 ~< 400°C 
and 0 >1 400°C. The first section is defined only by 
heat-conductivity of  non-coked glass-plastic. At  the 
second section an inl:ensive volumetric ablation occurs 
and considerable gets quantity is generated and then 
filtrated to the external surface of  the shell. Due to 
the fact there is a so-called phenomenon of porous 

O- 

0.4 

0.2  

0 1 ~  - 

0.99 

~00 500 400 3~~2~~ 

1.0 

r/R 

0.'1100 

1,01 

Fig. 5. Distributions of polymer phase ~b 2 ( ) and coke 
phase ~b3 ( - - - )  concentrations in ablating glass-plastic vs a 

shell thickness for different times t of fire action. 

cooling, when gases filtrate through the hotter solid 
frame and the cool one. It is to the second section 
that at each time moment  a peak of  pore pressure 
corresponds (Fig. 5) and this peak is displaced in the 
internal surface direction following the displacement 
of  the second section of  the temperature. At  the third 
section of  temperature 0 >t 400°C the ablating glass- 
plastic is essentially coked, its porosity is so great that 
ablation gases are freely filtrated not creating an excess 
pore pressure. 

Figures 6 and 7 show distributions of  radial o33 and 
tangential o22 stresses in the shell for different times. 
Solid curves show the stresses calculated by the faith- 
ful equations of  Section 2 and dashed lines correspond 
to the values determined by the shell theory. As seen 
from these figures the shell theory suggested describes 
all qualitative effects of  the stress state in ablating 
material, moreover  there is a good quantitative coinci- 
dence: for radial stresses distances from the exact 
solution do not exceed 15%, for tangential stresses 
these values also do not  exceed 15% at the first and 
the second sections and only for the third section 
at the zone of  coked material these values are more 
considerable and equal to 40%. However,  due to the 
fact that the coked zone is usually eliminated from 
strength calculations this accuracy can be acceptable. 

Peaks of  radial stresses are caused by pore gas pres- 
sure generated in material ablation. Peaks of  negative 
tangential stresses are also caused by the pore pres- 
sure. Tensile tangential in the coked zone are caused 
by shrinkage of  the ablating material. 

As seen from these figures, the most dangerous 
stresses are tensile radial ones. At  time t = t . . ~  50, 
the condit ion (46) is realized for the first t ime and 
the first shell delamination near the external surface 
occurs. Figure 8 exhibits the picture of  appearance 
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Fig. 6. Distributions of tangential stresses a22 vs a thickness of 
a cylindrical shell made of ablating glass-plastic for different 
times t of fire action. Symbols near the curves are times t 
(s). Solid curves ( )--solution obtained by numerical 
integration of system (1), dashed curves ( - - - ) - - so lu t ion  

(43) obtained by the shell theory. 

i _5o0 
I 

0:99 ~ 0 1  

-1 ~ r/R 

Fig. 7. Distributions of radial stresses cr, vs a thickness of a 
cylindrical shell made of ablating glass-plastic for different 
times t of fire action. Symbols near the curves are times t 
(s). Solid curves ( )--solution obtained by numerical 
integration of system (1), dashed curves ( - - - ) - - so lu t ion  

(43) obtained by the shell theory. 
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Fig. 8. Dependence of a relative thickness of nonlaminated 
shell part hd/h upon time t of fire action. 

tically linear. A t  t ime t = t** ~ 600 s, when hd/h 
reaches the value 0.05, the nonde lamina ted  shell thick- 
ness become so small tha t  pore  pressure Po of  gas 
accumulated  in de lamina t ion  cavities exceeds the stab- 
ility limit (55) and  a stability loss of  the internal  layer 
of  the glass-plast ic  shell occurs (Fig. 2C). In this case 
a complete  failure of  the t ank-con ta ine r  occurs as its 
in ternal  hermetiz ing shell is, as a rule, th in  and  does 
not  resist gas pressure. 

As seen f rom the computa t ions  conducted,  the t ime 
interval  t * * - t ,  is equal  approximate ly  to 550 s, t ha t  
exceeds t ,  by 10 times. Thus,  calculat ion of  internal  
hea t -mass  t ransfer  and  stresses is necessary up to time 
t** as the shell still performs its designated purpose  
at  these times. 

7. C O N C L U S I O N S  

1. The theory of  hea t -mass  t ransfer  processes and  
stresses in abla t ing thin-walled shell s t ructures is 
developed. 

2. Computa t iona l  accuracy by this theory is 
sufficiently h igh (the er ror  does not  exceed ~ 15% 
except the coked zone where the error  reaches 

40%).  Due  to the fact tha t  this zone is no t  as a rule, 
calculated in a force scheme, such accuracy is quite 
acceptable. 

3. The theory  of  de lamina t ions '  appearance  and  
p ropaga t ion  in th in  abla t ing shells and  the theory o f  
their  stability loss in ab la t ion  are developed. The last 
theory can be successfully applied in calculat ion of  
glass-plast ic  shell s tructures '  stability, for example, in 
tank-conta iners  for  the carriage of  harsh  media  under  
condi t ions  of  the fire action. 

of  new delaminat ions ,  this g raph  is character ized by 
thickness hd(t) of  the nonde lamina ted  material .  F r o m  
this figure the dependence ha/h(t) is seen to be prac- 
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